How to Read Math Expressions
Learn to Pronounce Math Symbols and Formulas
Basic
| Expression | How to Read | Translate | Pronounce |
|---|---|---|---|
| $$a + b$$ | a plus b | Translate | |
| $$a - b$$ | a minus b | Translate | |
| $$a \cdot b$$ | a times b | Translate | |
| $$a / b$$ | a over b | Translate | |
| $$a > b$$ | a is greater than b | Translate | |
| $$a < b$$ | a is less than b | Translate | |
| $$a = b$$ | a is equal to b | Translate | |
| $$a \neq b$$ | a is not equal to b | Translate | |
| $$a \geq b$$ | a is greater than or equal to b | Translate | |
| $$a \leq b$$ | a is less than or equal to b | Translate | |
| $$x^2$$ | x squared | Translate | |
| $$x^3$$ | x cubed | Translate | |
| $$x^n$$ | x to the power of n | Translate | |
| $$\sqrt{x}$$ | the square root of x | Translate | |
| $$\sqrt[n]{x}$$ | the n-th root of x | Translate | |
| $$\log x$$ | the logarithm of x (base 10) | Translate | |
| $$\ln x$$ | the natural logarithm of x (base e) | Translate | |
| $$e^x$$ | e to the power of x | Translate | |
| $$|x|$$ | the modulus of x | Translate | |
| $$\overline{x}$$ | x bar (the average of x) | Translate | |
| $$a \pm b$$ | a plus or minus b | Translate | |
| $$\frac{a}{b}$$ | a over b (fraction) | Translate | |
| $$a!$$ | a factorial | Translate |
Numbers
Fractions
Powers and Roots
Angle Operations
| Expression | How to Read | Translate | Pronounce |
|---|---|---|---|
| $$\sin \theta$$ | sine of theta | Translate | |
| $$\cos \theta$$ | cosine of theta | Translate | |
| $$\tan \theta$$ | tangent of theta | Translate | |
| $$\csc \theta$$ | cosecant of theta | Translate | |
| $$\sec \theta$$ | secant of theta | Translate | |
| $$\cot \theta$$ | cotangent of theta | Translate | |
| $$\sin^{-1} x$$ | arcsine of x or inverse sine of x | Translate | |
| $$\cos^{-1} x$$ | arccosine of x or inverse cosine of x | Translate | |
| $$\tan^{-1} x$$ | arctangent of x or inverse tangent of x | Translate | |
| $$\sin(\alpha \pm \beta)$$ | sine of (alpha plus or minus beta) | Translate | |
| $$\cos(\alpha \pm \beta)$$ | cosine of (alpha plus or minus beta) | Translate | |
| $$\tan(\alpha \pm \beta)$$ | tangent of (alpha plus or minus beta) | Translate | |
| $$\theta \pm \phi$$ | theta plus or minus phi | Translate | |
| $$\theta \cdot \phi$$ | theta times phi | Translate | |
| $$\theta / \phi$$ | theta over phi | Translate | |
| $$\sinh x$$ | hyperbolic sine of x | Translate | |
| $$\cosh x$$ | hyperbolic cosine of x | Translate | |
| $$\tanh x$$ | hyperbolic tangent of x | Translate |
Logic and Sets
| Expression | How to Read | Translate | Pronounce |
|---|---|---|---|
| $$a := b$$ | a is defined by(given as) b | Translate | |
| $$S_1 \Rightarrow S_2$$ | S sub one implies S sub two | Translate | |
| $$S_1 \Leftrightarrow S_2$$ | S sub one is equivalent to S sub two | Translate | |
| $$\{a, b, c\}$$ | the set of a, b, and c | Translate | |
| $$a \in A$$ | a is an element of set A | Translate | |
| $$\emptyset \text{ or } \{\}$$ | empty set | Translate | |
| $$A \subset B$$ | A is a proper subset of B | Translate | |
| $$A \subseteq B$$ | A is a subset of B | Translate | |
| $$A \cup B$$ | A union B | Translate | |
| $$A \cap B$$ | A intersection B | Translate | |
| $$A \setminus B$$ | A minus B | Translate | |
| $$\equiv$$ | is equivalent to | Translate | |
| $$\exists$$ | there exists | Translate | |
| $$\nexists$$ | there does not exist | Translate | |
| $$\forall$$ | for all | Translate | |
| $$\exists p \in \mathbb{P}, p = 2$$ | there exists a prime number p such that p equals two. | Translate | |
| $$\forall x \in \mathbb{R}, x + 0 = x$$ | for all x in the set of real numbers, x plus zero equals x. | Translate | |
| $$\mathbb{N}$$ | the set of all natural numbers | Translate | |
| $$\mathbb{Z}$$ | the set of all integers | Translate | |
| $$\mathbb{Q}$$ | the set of all rational numbers | Translate | |
| $$\mathbb{R}$$ | the set of all real numbers | Translate | |
| $$\mathbb{C}$$ | the set of all complex numbers | Translate | |
| $$\mathbb{P}$$ | the set of all prime numbers | Translate | |
| $$A \triangle B$$ | symmetric difference of A and B | Translate | |
| $$A^c$$ | complement of A | Translate | |
| $$\overline{A}$$ | closure of A | Translate |
Intervals
| Expression | How to Read | Translate | Pronounce |
|---|---|---|---|
| $$[a, b]$$ | closed interval from a to b | Translate | |
| $$(a, b)$$ | open interval from a to b | Translate | |
| $$[a, b)$$ | the interval from a to b, inclusive of a and exclusive of b. | Translate | |
| $$(a, b]$$ | the interval from a to b, exclusive of a and inclusive of b. | Translate | |
| $$(a, \infty)$$ | the half line starting at a and extending to infinity, exclusive of a. | Translate | |
| $$(-\infty, a)$$ | the half line starting at negative infinity and extending to a, exclusive of a. | Translate |
Factorials and Binomial Coefficients
| Expression | How to Read | Translate | Pronounce |
|---|---|---|---|
| $$n!$$ | n factorial (the product of all positive integers up to n) | Translate | |
| $$\binom{n}{k} \text{or} nC_k$$ | n choose k (the number of ways to choose k elements from a set of n elements) | Translate | |
| $$P(n,k)$$ | permutation of n things taken k at a time | Translate |
Sum and Product
| Expression | How to Read | Translate | Pronounce |
|---|---|---|---|
| $$\sum_{n=1}^{\infty} a_n$$ | the sum of a sub n from n equals 1 to infinity | Translate | |
| $$\sum_{k=0}^n \binom{n}{k}$$ | the sum from k equals zero to n of n choose k | Translate | |
| $$( \sum_{k=1}^n a_k b_k )^2$$ | the square of the sum of the products of a sub k and b sub k from k equals 1 to n | Translate | |
| $$\prod_{k=1}^n k$$ | the product from k equals one to n of k (n factorial) | Translate | |
| $$\bigcup_{i=1}^n A_i$$ | union of sets A sub i from i equals 1 to n | Translate | |
| $$\bigcap_{i=1}^n A_i$$ | intersection of sets A sub i from i equals 1 to n | Translate |
Functions
| Expression | How to Read | Translate | Pronounce |
|---|---|---|---|
| $$\varphi$$ | phi (variant) | Translate | |
| $$\varphi(0) = 0$$ | phi of zero equals zero | Translate | |
| $$f : A \to B$$ | f is a function that maps from the set A to the set B | Translate | |
| $$x \mapsto f(x)$$ | x is mapped to f(x) | Translate | |
| $$g: \mathbb{R} \to \mathbb{C}, \theta \mapsto g(\theta) := e^{i\theta}$$ | g from R(real numbers) to C(complex numbers), theta maps to g of theta, defined as(given by) e to the i theta | Translate | |
| $$f: \mathbb{R} \to \mathbb{R}, x \mapsto f(x) := 1 + x^2$$ | f from R(real numbers) to R, x maps to f of x, defined as(given by) one plus x squared | Translate | |
| $$h: \mathbb{C} \to [0, \infty), z \mapsto h(z) := |z|$$ | function h maps complex numbers C to the set of non-negative real numbers from zero to infinity, z maps to function h of z equals the modulus of z | Translate | |
| $$\text{im}(f)$$ | image or range of f | Translate | |
| $$\text{im}(f) = B$$ | the image(range) of f equals B | Translate | |
| $$f: A \to \text{im}(f)$$ | f from A to the image of f | Translate | |
| $$f^{-1}$$ | inverse function of f | Translate | |
| $$f^{-1}(b) := a$$ | f inverse of b is defined as(given by) a | Translate | |
| $$f_{i,j}$$ | f sub i comma j | Translate | |
| $$f \circ g$$ | f composed with g | Translate | |
| $$\ker(f)$$ | kernel of f | Translate | |
| $$f(x)$$ | f of x | Translate | |
| $$\lim_{x \to 0}$$ | x approaches 0 | Translate |
Calculus Operation Notations
| Expression | How to Read | Translate | Pronounce |
|---|---|---|---|
| $$\frac{d}{dx}$$ | d by dx (the derivation with respect to x) | Translate | |
| $$\frac{d}{dx} f(x)$$ | the derivative of f with respect to x | Translate | |
| $$f'(x)$$ | f prime of x (the derivative of f with respect to x) | Translate | |
| $$\int f(x) dx$$ | the integral of f with respect to x | Translate | |
| $$\int_a^b f(x) dx$$ | the definite integral of f from a to b with respect to x | Translate | |
| $$\lim_{x \to a} f(x)$$ | the limit of f as x approaches a | Translate | |
| $$\oint f(x) dx$$ | the line integral of f with respect to x | Translate |
Vector calculus and physics
| Expression | How to Read | Translate | Pronounce |
|---|---|---|---|
| $$\nabla$$ | nabla or del | Translate | |
| $$\nabla f$$ | gradient of(nabla) f | Translate | |
| $$\nabla \cdot \mathbf{F}$$ | divergence of(nabla dot) F | Translate | |
| $$\nabla \times \mathbf{F}$$ | curl of(nabla cross) F | Translate | |
| $$\partial$$ | partial | Translate | |
| $$\frac{\partial}{\partial x} f(x)$$ | the partial derivative of f with respect to x | Translate | |
| $$\frac{\partial f}{\partial x}$$ | partial of f with respect to x | Translate | |
| $$\frac{\partial^2 f}{\partial x^2}$$ | the second partial derivative of f with respect to x squared | Translate | |
| $$\frac{\partial}{\partial x_j} ( \frac{\partial f}{\partial x_i} )$$ | The partial derivative with respect to x sub j of the partial derivative of f with respect to x sub i | Translate | |
| $$\frac{\partial^2 f}{\partial x_j \partial x_i}$$ | The second partial derivative of f with respect to x sub j and x sub i | Translate | |
| $$\mathbf{a} \cdot \mathbf{b}$$ | dot product of vectors a and b | Translate | |
| $$\mathbf{a} \times \mathbf{b}$$ | cross product of vectors a and b | Translate |
Matrix Operations
Complex Numbers
Differential Equations
| Expression | How to Read | Translate | Pronounce |
|---|---|---|---|
| $$\frac{dy}{dx} = f(x,y)$$ | dy by dx equals f of x and y (first-order differential equation) | Translate | |
| $$\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = r(x)$$ | d squared y by dx squared plus p of x times dy by dx plus q of x times y equals r of x (second-order linear differential equation) | Translate |
What is the Math Expression Reader?
The Math Expression Reader is a powerful yet user-friendly tool designed to help you understand and pronounce mathematical symbols and formulas. Whether you're dealing with basic arithmetic, complex algebra, or advanced calculus, our tool provides clear and professional guidance on how to read each expression correctly.
This tool is perfect for students, educators, and anyone looking to improve their mathematical literacy. With easy-to-follow instructions and examples, you can confidently navigate through various mathematical expressions and enhance your learning experience.
рд╕реБрд╡рд┐рдзрд╛рдПрдБ
100+ рднрд╛рд╖рд╛рдУрдВ рдореЗрдВ рд╕рдЯреАрдХ AI рдЕрдиреБрд╡рд╛рдж
AI-рд╕рдВрдЪрд╛рд▓рд┐рдд рд╕рдЯреАрдХ рдЕрдиреБрд╡рд╛рдж
рдУрдкрдирдПрд▓ рдХреА AI рдиреНрдпреВрд░рд▓ рдЕрдиреБрд╡рд╛рдж рдкреНрд░реМрджреНрдпреЛрдЧрд┐рдХреА рдХреЗ рд╕рд╛рде рд╕рд╣рдЬрддрд╛ рд╕реЗ рд╡реИрд╢реНрд╡рд┐рдХ рд╕реНрддрд░ рдкрд░ рд╕рдВрд╡рд╛рдж рдХрд░реЗрдВ - рдмрд╛рддрдЪреАрдд, рджрд╕реНрддрд╛рд╡реЗрдЬреЛрдВ, рдФрд░ рднреА рдХрд╣реАрдВ, рдореВрд▓-рд╕реНрддрд░реАрдп рд╕рд╣реАрддрд╛ рдореЗрдВ рдЕрдиреБрд╡рд╛рдж рдХрд░рддреЗ рд╣реБрдПред
100+ рднрд╛рд╖рд╛ рд╕рдорд░реНрдерди
рдЕрдирд╛рдпрд╛рд╕ рд╣реА рд╕рд╛рдВрд╕реНрдХреГрддрд┐рдХ рд╡рд┐рднреЗрджреЛрдВ рдХреЛ рдкрд╛рдЯреЗрдВ OpenL рдХреЗ рдЕрдиреБрд╡рд╛рджреЛрдВ рдХреЗ рдорд╛рдзреНрдпрдо рд╕реЗ, рдЬреЛ 100 рд╕реЗ рдЕрдзрд┐рдХ рднрд╛рд╖рд╛рдУрдВ рдореЗрдВ, рдЕрдВрдЧреНрд░реЗрдЬреА рд╕реЗ рд▓реЗрдХрд░ рдЕрд░рдмреА, рдЪреАрдиреА, реЮреНрд░реЗрдВрдЪ, рд╕реНрдкреИрдирд┐рд╢, рдФрд░ тАЛрдмрд╣реБрдд kuchh aur ke saath upalabdh hain.
рдмрд╣реБ-рдкреНрд░рд╛рд░реВрдк рдЕрдиреБрд╡рд╛рдж
рдЖрд╕рд╛рдиреА рд╕реЗ рдкрд╛рда, рджрд╕реНрддрд╛рд╡реЗрдЬрд╝, рдЪрд┐рддреНрд░, рдСрдбрд┐рдпреЛ - рдкреАрдбреАрдПрдл, рд╡рд░реНрдб, рдкреАрдПрдирдЬреА, рдПрдордкреА3 рдФрд░ рдЕрдиреНрдп рдХрд╛ рдЕрдиреБрд╡рд╛рдж рдХрд░реЗрдВред рдорд▓реНрдЯреА-реЮреЙрд░реНрдореЗрдЯ рдЕрдиреБрд╡рд╛рдж рдХрд╛рд░реНрдпреЛрдВ рдХреЛ рд╕реБрд▓рднрддрд╛ рд╕реЗ рдкреНрд░рд╕рдВрд╕реНрдХрд░рд┐рдд рдХрд░рдиреЗ рд╣реЗрддреБ реЮрд╛рд╕реНрдЯ, рдХреБрд╢рд▓ рд╕реЗрд╡рд╛ред
рдкрд░реЗ рдЕрдиреБрд╡рд╛рдж
рдПрдЖрдИ рд╡реНрдпрд╛рдХрд░рдг рдЙрдкрдХрд░рдгреЛрдВ, рд▓реЗрдЦрди рд╕реБрдзрд╛рд░, рдФрд░ рднрд╛рд╖рд╛ рд╕реАрдЦрдиреЗ рдХреЗ рдорд╛рдзреНрдпрдо рд╕реЗ рдЕрдкрдиреЗ рд▓реЗрдЦрди рдХреМрд╢рд▓ рдХреЛ рдЕрдХрд╛рджрдорд┐рдХ рдФрд░ рдкреНрд░реЛреЮреЗрд╢рдирд▓ рдЙрддреНрдХреГрд╖реНрдЯрддрд╛ рдХреЗ рд╕реНрддрд░ рдкрд░ рдкрд╣реБрдВрдЪрд╛рдПрдВред
рдЗрд╕реЗ рдореБрдлреНрдд рдореЗрдВ рдЖрдЬрдорд╛рдПрдВ
OpenL рдХреЛ рдореБрдлреНрдд рдореЗрдВ 30 рджреИрдирд┐рдХ рдЕрдиреБрд╡рд╛рджреЛрдВ рдХреЗ рд╕рд╛рде рдЖрдЬрдорд╛рдПрдВред рдкреЗрд╢реЗрд╡рд░ рдЕрдиреБрд╡рд╛рдж рдХреА рдЬрд░реВрд░рддреЛрдВ рдХреЗ рд╣рд┐рд╕рд╛рдм рд╕реЗ, рд▓рдореНрдмреЗ рдкрд╛рдареЛрдВ рдХреЗ рд▓рд┐рдП рдЕрд╕реАрдорд┐рдд рд╕реБрд╡рд┐рдзрд╛ рдкреНрд░рд╛рдкреНрддрд┐ рд╣реЗрддреБ Pro рдореЗрдВ рдЙрдиреНрдирддрд┐ рдХрд░реЗрдВред
рд╢реИрдХреНрд╖рд┐рдХ рдЫреВрдЯ
рдЫрд╛рддреНрд░ рдФрд░ рд╢рд┐рдХреНрд╖рдХ рдЬреЛ .edu рдИрдореЗрд▓ рдкрддреЗ рдХрд╛ рдЙрдкрдпреЛрдЧ рдХрд░рддреЗ рд╣реИрдВ, рд╡реЗ 30% рдХреА рдЫреВрдЯ рдХрд╛ рдореЫрд╛ рдЙрдард╛ рд╕рдХрддреЗ рд╣реИрдВред рд╕рд╕реНрддреА рднрд╛рд╖рд╛ рд╕реАрдЦрдиреЗ рдХреЛ рд╕рд╣рд╛рдпрддрд╛ рдкреНрд░рджрд╛рди рдХрд░рдиреЗ рдХреЗ рдкреНрд▓рд┐рдП, рдЖрдк рд╣рд░ рд╕рд╛рд▓ рдЗрд╕ рдкреНрд░рд╕реНрддрд╛рд╡ рдХреЗ тАЛрд▓рд┐рдПтАЛ тАЛAaveedanтАЛ тАЛkar sakte hain.
